
B.Sc. (Sem. - 4) Physics 

Course: US04CPHY21 

Electromagnetic Theory and 

Spectroscopy

UNIT-3 Lecture 3

Dr. A. R. Jivani, Physics Department, VPM 



UNIT -III 

Atomic Spectra 

Dr. A. R. Jivani, Physics Department, VPM 



UNIT - III Atomic Spectra-Topics
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Coupling Schemes: 
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j-j Coupling



Coupling Schemes: L-S Coupling

L = σ 𝑙𝑖 and  S = σ𝑠𝑖

J = L + S

J = ( l1  + l2 + l3 + ….) + ( s1  + s2 + s3 + ….)

J follows certain quantum rules
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Coupling Schemes: L-S Coupling

L = σ 𝑙𝑖 and  S = σ𝑠𝑖

J = L + S

J follows certain quantum rules

(i) All the three vectors L, S and J must be quantized.
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Coupling Schemes: L-S Coupling

L = σ 𝑙𝑖 and  S = σ𝑠𝑖

J = L + S

J follows certain quantum rules

(ii) L may have values 0, 1, 2, 3, … depending upon

the number of electrons in the atom and the directions

of their orbital vectors.
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Coupling Schemes: L-S Coupling

J follows certain quantum rules

(iii) S may have values 0,
1

2
, 1,

3

2
, 2,

5

2
,3, … depending

upon the number of electrons in the atom and the

directions of their spin vectors.

S may have integral value for even number of

electrons in the atom.
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Coupling Schemes: L-S Coupling

J follows certain quantum rules

(iii) S may have values 0, 
1

2
, 1, 

3

2
, 2, 

5

2
,3,  … depending 

upon the number of electrons in the atom and the 

directions of their spin vectors.

S may have half-integral for odd number of

electrons in the atom.
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Coupling Schemes: L-S Coupling

J follows certain quantum rules:

(iv) J may have values 0, 1, 2, 3, … when S is an

integer

i.e. for even number of electrons in the atom.
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Coupling Schemes: L-S Coupling

J follows certain quantum rules

(iv) J may have values
1

2
,
3

2
,
5

2
, … when S is a half-

integer

i.e. for odd number of electrons in the atom.
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Coupling Schemes: L-S Coupling

For an atom with only one electron in normal state

 l =0

L = 0  (Only one value)

S = 
1

2

  J = L + S  = 
1

2
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Coupling Schemes: L-S Coupling

For an atom with two electrons in normal state

 Suppose l = 0  and l =1

L = 0 + 1 = 1 (Only one value)

S = 
1

2
+

1

2
= 1   or 

1

2
-
1

2
= 0

  J = L + S  =0, 1, 2     designated by   3P0 ,
3P1 , 3P2
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Coupling Schemes: L-S Coupling

For an atom with two electrons in normal state

 Suppose l = 0  and l =1

L = 0 + 1 = 1 (Only one value)

S = 
1

2
+

1

2
= 1   or  

1

2
-
1

2
= 0

  J = L + S  = 0, 1, 2     designated by   3P0 ,
3P1 , 3P2

Splitting of P state into a Triplet and J =0 and state 1P1
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Coupling Schemes: L-S Coupling

Suppose L = 2  and  S = 
3

2

Here L > S   therefor there are ( 2 S +1) possible values 

of J

  J = L + S  = (2 + 
3

2
= 

7

2
) , … . , (2 −

3

2
=

1

2
)

 Possible values of J are 
7

2
, 
5

2
,
3

2
,
1

2
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Coupling Schemes: L-S Coupling

Suppose L = 2  and  S = 
3

2

 Possible values of J are 
7

2
, 
5

2
,
3

2
,
1

2
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J = 7/2 L = 2

S = 3/2

J = 1/2



Coupling Schemes: L-S Coupling

Suppose L = 2  and  S = 
3

2

 Possible values of J are 
7

2
, 
5

2
,
3

2
,
1

2
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L = 2

S = 3/2

J = 5/2

L = 2

S = 3/2

J = 3/2



Coupling Schemes: L-S Coupling

Suppose L = 1  and  S = 2 [For practice ]

Here L < S   therefor there are ( 2 L +1) possible values 

of J

 Possible values of J are ? ? ? ? ?
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Coupling Schemes: j-j Coupling

In this type of coupling, each electron contributes to the total 

angular momentum of the atom by combing first its individual 

spin and orbit vectors by the relation

J =  l  + s

Then the vector sum of each j corresponding to each electron 

gives the total angular momentum J to the atom

(l1 + s1) + (l2 + s2) + (l3 + s3) + …  = J
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Coupling Schemes: j-j Coupling
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3.7 FINE STRUCTURE OF 

HYDROGEN LINES 



3.7 FINE STRUCTURE OF HYDROGEN LINES

• How to explain fine structure doubling of spectral

lines?

• Having explained the action of magnetic field on small

atomic magnets in Stern-Gerlach experiment, we

may visualize the fine structure doubling of spectral

lines on the basis of a magnetic interaction between

the spin and angular momenta of atomic electrons.
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3.7 FINE STRUCTURE OF HYDROGEN LINES

• Magnetic Moment:

• An electron revolving round a proton finds itself in a

magnetic field because, in its own frame of reference,

the proton is circling about it.

• This magnetic field then acts upon the electron's own

magnetic moment to produce a kind of internal

Zeeman effect.
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3.7 FINE STRUCTURE OF HYDROGEN LINES

• The magnetic energy Vm of a magnetic dipole moment

𝜇 in a magnetic field of flux density B is

𝑉𝑚 = − 𝜇.𝑩 (1)

𝑉𝑚 = ±
𝑒 ℏ

2𝑚
𝑩 (2)

• where
𝑒 ℏ

2𝑚
is spin magnetic moment in the direction

of B.
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3.7 FINE STRUCTURE OF HYDROGEN LINES

• Depending upon the orientation of its spin vector,

the energy of the electron in a given atomic state will

be higher or lower by the
𝑒 ℏ

2𝑚
B than its value in the

absence of spin orbit interaction.
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3.7 FINE STRUCTURE OF HYDROGEN LINES

• The result is the splitting of every quantum state

(except S state) into two separate sub-states and

consequently, the splitting of every spectral line

into two component lines.
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3.7 FINE STRUCTURE OF HYDROGEN LINES

• Depending upon the orientation of its spin vector, the
energy of the electron in a given atomic state will be

higher or lower by the
𝑒 ℏ

2𝑚
B than its value in the absence

of spin orbit interaction.

• The result is the splitting of every quantum state (except S
state) into two separate sub-states and, consequently, the
splitting of every spectral line into two component
lines.

• The assignment of s =
𝟏

𝟐
is the only one that conforms to

the observed fine structure doubling.
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3.7 FINE STRUCTURE OF HYDROGEN LINES

• Let us now have the estimate of magnetic flux

density and magnetic energy in fine structure

doubling.

• The circular wire loop of radius r that carries the

current i has a magnetic field of flux density at its

centre

𝐵 =
𝜇𝑜 𝑖

2 𝑟
(3)

• where 𝜇𝑜 is the permeability of the vacuum.
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3.7 FINE STRUCTURE OF HYDROGEN LINES

• An orbital electron say in a hydrogen atoms 'sees' itself
circled f times each second by a proton of charge +e for a
resulting flux density of

𝐵 =
𝜇𝑜 𝑓 𝑒

2 𝑟
(4)

• In the ground state of hydrogen atom f = 6.8 x 1015 cps
and r = 5.3 x 10-11 metre, so that

B = 13 Tesla (abbreviation T) (5)

• which is a very strong magnetic field.
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3.7 FINE STRUCTURE OF HYDROGEN LINES

• The value of Bohr magneton is

𝑒 ℏ

2𝑚
=9.27 x 10-24 J/T  (5)

• Hence, magnetic energy ( Vm ) of one such electron

is

𝑉𝑚 =
𝑒 ℏ

2𝑚
𝐵 = ( 9.27 x 10-24 J/T) × 13 𝑇

Vm= 1.2 x 10-22 joules (6)
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3.7 FINE STRUCTURE OF HYDROGEN LINES

• The wavelength shift in such a change in energy is

about 2 0A for a spectral line of unperturbed

wavelength 6563 0A, somewhat more than the

observed splitting of the line originating in the n = 3 →

n= 2 transition.

• However, the flux density of the magnetic field at the

orbits of higher order is less than for ground state

orbit, which accounts for the discrepancy.
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3.8. SPECTRAL TERMS AND THEIR NOTATIONS 



3.8. SPECTRAL TERMS AND THEIR NOTATIONS

• The optical spectrum of an element is the

characteristic of the valence electron, i.e., optical

spectrum particularly depends upon the electrons

which are not interlocked in closed shells.
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3.8. SPECTRAL TERMS AND THEIR NOTATIONS

• The different atoms having different number of valence

electrons in their outermost orbit show different types

of spectra.
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3.8. SPECTRAL TERMS AND THEIR NOTATIONS

• For example, the alkali metals show one type of

spectrum, while alkaline earth of another type, since

they possess one and two valence electrons,

respectively in their outermost shell.
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3.8. SPECTRAL TERMS AND THEIR NOTATIONS

• Further, the state of electron, is described in terms of

the different values of l, s and j.

The small letters l, s and j depict the state of an

electron, while

the capital letters, L, S and J depict the state of an

atom as a whole

Dr. A. R. Jivani, Physics Department, VPM 



3.8. SPECTRAL TERMS AND THEIR NOTATIONS

But when we are dealing with one valence electron

system, the values of L, S and J are the same as

those of I, s and j, respectively, since the interlocked

electrons in closed shells and sub-shells contribute

nothing to the total angular momentum.
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3.8. SPECTRAL TERMS AND THEIR NOTATIONS

• Dealing with many electron systems, the vectors L, S

and J which define the state of an atom are vector

sums of l, s and j, respectively for different free

electrons.
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3.8. SPECTRAL TERMS AND THEIR NOTATIONS

• The electrons having 0, 1, 2, 3.. etc. values for l are

represented by the small letters s, p, d, f, ..... etc.

respectively.

• Similarly, the capital letters, S, P, D, F depict the state

of the atom for the value if L as 0, 1, 2, 3, ...,etc.
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3.8. SPECTRAL TERMS AND THEIR NOTATIONS

• In the case of one-electron system the value of S is +
𝟏

𝟐
and hence the multiplicity of the state is 2.

• The multiplicity of a state is given by r = 2S + 1.

• Hence the single-electron system always gives rise to

a double state, corresponding to the value (L +
𝟏

𝟐
) and

(L -
𝟏

𝟐
) for J with the exception of ground state.

J =  (L + 
𝟏

𝟐
)  and J = (L -

𝟏

𝟐
)
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3.8. SPECTRAL TERMS AND THEIR NOTATIONS

• The multiplicity of a state is given by r = 2S + 1.

• In the case of many electron system, S may not

necessarily have the value 1/2, but, it may have any

value.

• For example, in two electron system S = 0 or 1.

Therefore, the state is either singlet or triplet.
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3.8. SPECTRAL TERMS AND THEIR NOTATIONS

• The multiplicity of a state is given by r = 2S + 1.

• In three electron system S =
1

2
𝑜𝑟

3

2
and hence state is

doublet or quartet, and so on except the ground term.
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3.8. SPECTRAL TERMS AND THEIR NOTATIONS

• Now if we want to depict the state of an atom, we must
mention the values of L, S, J and r.

• This is done by writing the state having L=1, S =1/2 and
as J = 3/2 as 2P3/2.

• The term 2P3/2, clearly indicates that

• the value of L is given by the capital letter,
• the value of J by right subscript below the capital letter

and
• the value of r by left superscript at the top of capital letter.

• Since r = 2S + 1, the S is obviously determined.
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3.8. SPECTRAL TERMS AND THEIR NOTATIONS

• L=1, S =1/2 and as J = 3/2 as 2P3/2.

• Sometimes the value of principal quantum number is

also mentioned before the capital letter as 2 2P3/2

• Here the value of n is 2.
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3.8. SPECTRAL TERMS AND THEIR NOTATIONS

• In one-electron system, every state is doublet and may

be depicted as below:

2S1/2, 
2P1/2, 2P3/2, 

2D3/2,
2D5/2 and so on.

• Here one point is important to note that multiplicity

symbol of the system is used always whether all the

terms are present or not.

• For example, the ground term is here written as 2S1/2. But

actually, the state is singlet and we should write 1S1/2.
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3.8. SPECTRAL TERMS AND THEIR NOTATIONS

• To write the ground state as 2S1/2 is preferable

because it indicates to which system the ground term

belongs, as in this case to the doublet system.
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3.8. SPECTRAL TERMS AND THEIR NOTATIONS

• Why is the ground state always singlet?

• We know that the value of J is given by L + S to L - S

with a difference of one.

• Since in one-electron system S = ± 1/2 (with respect

to L) hence J = L + ½ and J = L - ½, i.e. J has only

two values and the state is said to be doublet.
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3.8. SPECTRAL TERMS AND THEIR NOTATIONS

• For the ground state L = 0, J = ½ or J = - ½. But net

angular momentum of the atom is always positive and

the possibility of -1/2 is ruled out.

• Therefore, the ground state of single electron system

is always singlet.
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3.8. SPECTRAL TERMS AND THEIR NOTATIONS

• In case of many-electron system for the ground state

L = 0 and J = S, S can assume any value of 0, 1/2, 3/2

etc.

• When L < S, the multiplicity of the state is given by

(2L + 1) which leads again to the possible value of J

as one and the state is singlet.
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3.8. SPECTRAL TERMS AND THEIR NOTATIONS
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The notation for a single-electron atom becomes 

n2S+1 LJ

The letters and numbers are called spectroscopic 

symbols.

There are singlet states (S = 0) and triplet states 

(S = 1) for two electrons.



3.9 POSITRONIUM



3.9 POSITRONIUM

• The combined structure, the positronium, as it

is called, revolves round the common centre of

gravity.

• Thus the system is very much identical to the

hydrogen atom and so the formulae derived for

hydrogen atom may be applied for this system.
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3.9 POSITRONIUM

• Hence the orbital radius is given by

𝑟𝑛 =
ℏ2

𝑒2
𝑚+𝑚

𝑚2

𝑛2

𝑍
(4 𝜋 𝜀0) (1)

• For ground state, 𝑟0 =
2 ℏ2 (4 𝜋 𝜀0)

𝑚 𝑒2
≈ 1 °𝐴

• Thus, the orbital radius increases by a factor two.
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3.9 POSITRONIUM

• The energy of dissociation is given by

𝐸 = −
1

4 𝜋 𝜀0
2

𝑒4

2 ℏ2
𝑚2

𝑚+𝑚
= −

𝑚 𝑒4

4 ℏ2
1

4 𝜋 𝜀0
2 (2)

• This is one half of the ionization potential of the

hydrogen atom.
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3.9 POSITRONIUM

• The positronium exists in two states depending upon

the state of spin orientation.

• These are ortho-positronium in which the spins of

the two particles are parallel and para-positronium

in which spins are anti-parallel.
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3.9 POSITRONIUM

• In para-positronium, as two particles have their spin

anti-parallel, the system is an unstable one with a life

time 1.25 x 10-10 sec. The para-positronium decays

into two photons.

• The ortho-positronium is stable enough and has a

life time of the order of 1.4 x 10-7 sec.

• It decays into three -photons so as to maintain the

conservation of spin.
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3.9 POSITRONIUM

• The ground level of ortho-positroniuro lies above the

ground state of para-positronium by only 0.84 x 10-2

eV.

• The difference between the life times of two photons

accelerates the annihilation process.
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Thank you..


